翻訳と辞書
Words near each other
・ Hukarere Girls' College
・ Hukawng Valley
・ Hukawng Valley Tiger Reserve
・ Hukbalahap
・ Hukbalahap Rebellion
・ Huke
・ Hukeng
・ Hukeng, Fujian
・ Huker
・ Huishoud en Industrieschool
・ Huishu
・ Huishue Lake
・ Huishui County
・ Huishui Miao
・ Huisje Mostinckx
Huisken's monotonicity formula
・ Huisman
・ Huisman–Olff–Fresco models
・ Huismes
・ Huisne
・ Huisnes-sur-Mer
・ Huisseau-en-Beauce
・ Huisseau-sur-Cosson
・ Huisseau-sur-Mauves
・ Huisseling en Neerloon
・ Huissen
・ Huissier
・ Huissier de justice
・ Huistean Du Mackay, 14th of Strathnaver
・ Huitang, Ningxiang


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Huisken's monotonicity formula : ウィキペディア英語版
Huisken's monotonicity formula
In differential geometry, Huisken's monotonicity formula states that, if an -dimensional surface in -dimensional Euclidean space undergoes the mean curvature flow, then its convolution with an appropriately scaled and time-reversed heat kernel is non-increasing.〔.〕〔.〕 The result is named after Gerhard Huisken, who published it in 1990.〔.〕
Specifically, the -dimensional time-reversed heat kernel converging to a point at time may be given by the formula〔
:u(x,t) = \frac\right).
Then Huisken's monotonicity formula gives an explicit expression for the derivative
of
:\int u(x,t) d\mu,
where is the area element of the evolving surface at time . The expression involves the negation of another integral, whose integrand is non-negative, so the derivative is non-positive.
Typically, and are chosen as the time and position of a singularity of the evolving surface, and the monotonicity formula can be used to analyze the behavior of the surface as it evolves towards this singularity. In particular, the only surfaces for which the convolution with the heat kernel remains constant rather than decreasing are ones that stay self-similar as they evolve, and the monotonicity formula can be used to classify these surfaces.
Grigori Perelman derived analogous formulas for the Ricci flow.〔.〕〔.〕
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Huisken's monotonicity formula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.